Specific neurotrophic factors support the survival of cortical projection neurons at distinct stages of development.

نویسندگان

  • L A Catapano
  • M W Arnold
  • F A Perez
  • J D Macklis
چکیده

Repair of specific neuronal circuitry in the neocortex may be possible via neural precursor transplantation or manipulation of endogenous precursors in situ. These approaches will almost certainly require a detailed understanding of the mechanisms that control survival and differentiation of specific neuronal lineages. Such analysis has been hampered by the overwhelming diversity of neuronal types intermixed in neocortex and the inability to isolate individual lineages. To elucidate stage-specific controls over the survival of individual lineages of cortical neurons, we purified immature callosal projection neurons (CPN) at distinct stages of development from embryonic and postnatal mouse cortex by retrograde fluorescence labeling, followed by fluorescence-activated cell sorting. Purified CPN survive well in culture, acquire stage-specific projection neuron morphologies, and express appropriate neurotransmitters and growth factor receptors. Purified CPN are dependent on exogenous trophic support for survival in a stage-specific manner. Survival of postnatal day 2 (P2) to P3 and P6-P7 CPN is promoted by overlapping but distinct sets of neurotrophic factors, whereas embryonic day 19 CPN show less specificity of dependence on peptide factors. These studies demonstrate for the first time the stage-specific control by peptide growth factors over the survival of a specific cortical neuronal lineage. Such information may be critical for the future goal of directed differentiation of transplanted or endogenous precursors toward cellular repair of complex cortical circuitry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism

Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Effect of environmental factor influencing the development of mouse cerebral cortex.

The cerebral cortex is organized into six cell layers, each of which contains neurons with similar morphology, functions, gene-expression profiles, and projection patterns. These layer-specific neuronal phenotypes are sequentially generated from common cortical progenitor cells in the ventricular zone of dorsal telencephalon. Although recent investigations have clarified important roles of intr...

متن کامل

Stage-specific and opposing roles of BDNF, NT-3 and bFGF in differentiation of purified callosal projection neurons toward cellular repair of complex circuitry.

Cellular repair of neuronal circuitry affected by neurodegenerative disease or injury may be approached in the adult neocortex via transplantation of neural precursors ("neural stem cells") or via molecular manipulation and recruitment of new neurons from endogenous precursors in situ. A major challenge for potential future approaches to neuronal replacement will be to specifically direct and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 22  شماره 

صفحات  -

تاریخ انتشار 2001